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Abstract
In a context of climate change and forest decline, a better understanding of the sources of tree flexibility involved in phenotypic
plasticity and adaptation is needed. These last years, the role of epigenetics in the response to environmental variations has been
established in several model plants at the genotype level but little is known at the level of natural populations grown in
pedoclimatic sites. Here, we focused on three French natural populations of black poplar, a key pioneer tree from watersheds,
planted in common garden and subjected to controlled variations of water availability. We estimated common genetic parameters
such as narrow-sense heritability (h2), phenotypic differentiation index (PST), and the overall genetic differentiation index (FST)
from genome-wide SNPs to evaluate the extent of epigenetic variations. Indeed, global DNAmethylation levels from individuals
exposed to drought or irrigated in a common garden were used. We found that the three populations were not distinguished by
their levels of DNA methylation. However, a moderate drought was associated to a significant decrease in DNA methylation in
the populations. Narrow-sense heritability and PST estimates of DNA methylation were similar to those found for biomass
productivity. Heritability and PST were higher when trees were subjected to drought than in control condition. Negative genetic
correlations between global DNA methylation and height or biomass were detected in drought condition only. Altogether, our
data highlight that global DNAmethylation acts as a genetic marker of natural population differentiation under drought stress in a
pedoclimatic context.
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Introduction

Trees are sessile organisms with a long lifespan that are con-
stantly exposed to environmental changes over decades. In
order to survive, they need to develop mechanisms enabling
them to respond and to survive to recurring stress (Bruce et al.

2007). Over the last decades, forest tree declines have been
reported around the world in relation to heat stress and drought
(Allen et al. 2010; IPCC 2014). The ability of trees to survive
through their phenotypic plasticity or potential of adaptation is
a fundamental question. However, the sources of flexibility in
trees and the underlying molecular mechanisms have not been
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fully established (van Kleunen and Fischer 2005; Bradshaw
2006; Nicotra et al. 2010; Bräutigam et al. 2013; Plomion
et al. 2016). In this context, it has been shown that the genetic
variability (sequence variations) is not the only source of phe-
notypic variation and heritability and this phenomenon was
called missing heritability (Maher 2008). Among possible
mechanisms, epigenetics with the modifications of chromatin
marks such as DNA methylation and histone marks altering
gene expression seems of first importance (Nicotra et al. 2010;
Mirouze and Paszkowski 2011; Feil and Fraga 2012;
Niederhuth et al. 2016). The influence of environmental fac-
tors on epigenetic marks, and on the resulting changes in gene
expression and phenotype, has attracted considerable attention
these last years particularly in model plants such as
Arabidopsis, maize, poplar but mainly at the individual
(genotype) level (Bräutigam et al. 2013; Plomion et al.
2016; Richards et al. 2017). Epigenetic mechanisms could
constitute an additional layer of heritable phenotypic variation
and evolutionary potential for natural populations since these
modifications can be reversibly induced by environmental
stimuli and eventually inherited by future generations (Law
and Jacobsen 2010; Richards et al. 2017). However, the eco-
logical significance in terms of acclimation and adaptation still
needs evidence particularly using field studies and population
epigenomics (Richards et al. 2017). In addition, the interacting
complexity between genetic and epigenetic variations and the
evolutionary role of these variations in natural populations
have only been recently investigated in few studies in plants
(Shen et al. 2014; Dubin et al. 2015; Robertson et al. 2017).
Finally, all these recent studies are mainly on annual plants
(Dubin et al. 2015; Kawakatsu et al. 2016; Verhoeven et al.
2016; Richards et al. 2017; Sork 2017) and there is a need of
data for natural tree populations originated from different
pedoclimatic sites.

Poplar (Populus spp.) is a model tree with sequenced ge-
nomes (http://www.phytozome.net/poplar.php), genetic
diversity, fast juvenile growth, and large water requirements
(Tuskan et al. 2006; Jansson and Douglas 2007) relevant for
dissecting the ecophysiological and molecular determinants
of tolerance to water deficit in trees (Marron et al. 2003;
Monclus et al. 2006; Fichot et al. 2015; Hamanishi et al.
2012; Bizet et al. 2015; Toillon et al. 2016). Accordingly,
poplar has been particularly used to investigate the role of
epigenetics in the response of trees to environmental varia-
tions (Bräutigam et al. 2013; Plomion et al. 2016). DNA
methylation was shown to vary across hybrids, in correlation
to their biomass productivity and in response to water deficit
(Gourcilleau et al. 2010; Raj et al. 2011). In addition, charac-
teristics of gene-body DNA methylation and relationships
with tissue-specific or stress gene expression were established
(Vining et al. 2012; Lafon-Placette et al. 2013; Bräutigam
et al. 2013; Liang et al. 2014; Lafon-Placette et al. 2018).
Recently, the epigenetic component of site-dependent growth

performances (Guarino et al. 2015; Schönberger et al. 2016)
or the developmental phenotypic plasticity at the shoot apical
meristem level in response to environmental bud break con-
ditions (Conde et al. 2017) and water availability (Lafon-
Placette et al. 2018) was reported.

In this study, we focused on natural populations of
European black poplar (Populus nigra L.), a key pioneer
tree species widely used not only for its economic interest
as a parent pool for genetic breeding of Populus ×
canadensis poplars but also for its ecological value in the
dynamics of riparian habitats and soil stabilization.
However, P. nigra is one of the most threatened tree spe-
cies in Europe as a result of global climate changes, frag-
mentation and loss of its native habitat and lack of genetic
diversity (de Rigo et al. 2016). We assessed the extent of
genetic variation of global DNA methylation from three
natural populations of P. nigra acclimated in a common
garden and evaluated under irrigated and drought regimes.
The ecophysiological characterization of these populations
has already been reported (Chamaillard et al. 2011). Global
DNA methylation, a widely used epigenetic indicator in
plants (Lambé et al. 1997; Trap-Gentil et al. 2011;
Teyssier et al. 2014; Alonso et al. 2015; Alonso et al.
2016; Plomion et al. 2016), was assessed in the shoot api-
cal meristem of cloned individuals of the three populations
under irrigated and non-irrigated regimes as previously re-
ported (Gourcilleau et al. 2010; Lafon-Placette et al. 2013;
Condé et al. 2017; Lafon-Placette et al. 2018). We made
use of recently available SNP data (Faivre-Rampant et al.
2016) in order to reconstruct genomic relationships be-
tween genotypes within and between populations and esti-
mated the narrow-sense heritability (h2) and phenotypic
differentiation index (PST) for global DNA methylation.
Finally, we estimated genetic correlations between global
DNA methylation and biomass productivity traits.

Materials and methods

Plant material and experimental design

The three P. nigra populations (NOH, RAM, and SPM) orig-
inate from France were investigated in this study. The NOH
population originates from Southern France along the
Nohèdes river (42° 37′ 24″ N, 2° 16′ 36″ E, 1000 m), the
RAM population from South-Eastern France along the
Drôme river (44° 45′ 08″ N, 4° 54′ 01″ E, 187 m), and the
SPM population from Central France along the Loire river
(47° 52′ 19″ N, 1° 49′ 24″ E, 91 m) (Chamaillard et al.
2011). Clonal copies of genotypes from the three populations
were grown under two watering regimes as reported in
Chamaillard et al. (2011). Cuttings were sampled on 30 sexu-
ally mature trees without any prior phenotypic selection in
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each population and were then planted in two plots in a com-
mon garden in spring 2006 (INRA Centre Val-de-Loire re-
search site Loiret, France). The two plots were split into five
randomized complete blocks with one cutting of each geno-
type per block (i.e., 30 genotypes × 3 populations in each
block). In 2007, the two plots were equally watered with over-
head sprinklers during the growing season in order to promote
growth. In 2008, irrigation was withheld in one of the two
plots from June 18, 2008 to the end of the growing season
(drought), while the second one remained regularly irrigated.
Predawn leaf water potential (Ψpd) was monitored each week
from June 18 to August 18, 2008 using a pressure chamber
(PMS Instruments, Albany, OR, USA) and was used as an
index of soil water availability. From mid-June to mid-
August, Ψpd remained > − 0.18 MPa in the irrigated regime
while a progressive drop was recorded in drought condition
with a peak reaching − 0.52 MPa on July 24. Annual shoot
fresh mass (biomass, g) and annual height growth increment
(cm), alongwith other traits, were assessed in order to evaluate
the effect of the drought stress on these trees (Chamaillard
et al. 2011). During winter 2008–2009, due to sampling con-
straints, Shoot Apical Meristems (SAM) were only collected
on 42 genotypes (11 NOH, 15 RAM and 16 SPM) in one
block for each of the two watering regimes (irrigated and
drought) as described by Lafon-Placette et al. (2013) and used
to extract genomic DNA.

DNA methylation analysis

Genomic DNAwas extracted from SAMs as previously de-
scribed by Porebski et al. (1997). Briefly, sampled SAMs
were ground into a fine powder in liquid nitrogen and ge-
nomic DNAwas extracted using CTAB buffer. RNA diges-
tion was realized by RNAse A (Sigma-Aldrich, Saint
Quentin Fallavier, France) and precipitation in isopropanol
buffer. DNA was then hydrolyzed in nucleosides and ana-
lyzed by high-performance liquid chromatography (HPLC)
as previously described by Zhu et al. (2013). About 5 μg of
the extracted genomic DNA was digested in 700 U of
DNAse I (Roche Diagnostic, France). Phosphodiesterase I
(0.05 U) (Pharmacia, France) and 0.5 U of alkaline phos-
phatase III (Sigma, France) were used in order to remove
phosphate groups. The free nucleosides were then purified
(Ethanol 96%), and global DNA methylation was assessed
by HPLC. A hydrophobic column Gemini™ (150 ×
4.6 mm, 5 μm, Phenomenex, France) was used. The solu-
tion of the free nucleosides was loaded onto the hydropho-
bic column containing an aqueous buffer with 0.5% of
methanol (v/v) and 5 mM of acetic acid. The flow was set
at 1.5 ml/min. Commercial standard of 2′-deoxycytidine (C)
and 5-methyl-2′-deoxycytidine (mC) was used to set the
standard curve allowing to identify and quantify the amount
of C and mC. Global DNA methylation levels were then

determined using the following formula: % mC = (mC /
(mC + C)) × 100. To test possible contamination by RNAs,
commercial standards were also injected. For each sample,
two independent hydrolyses and two HPLC runs for each
hydrolysis at least were realized.

Statistical analysis

Statistical analyses were realized with the R statistical soft-
ware (R Foundation for Statistical Computing, Vienna,
Austria). Global DNA methylation changes, treatment, and
population effects were estimated by analysis of variance
(ANOVA). Genetic and residual correlations were calculated
using the Bsommer^ package (Covarrubias-Pazaran 2016).
Statistical tests were considered significant at *P < 0.05,
**P < 0.01, or ***P < 0.001.

SNP data, genomic relationship, and population
structure

SNP data on the 42 genotypes studied have been previ-
ously reported (Faivre-Rampant et al. 2016; Le Paslier
et al. 2016). RAM and SPM samples were genotyped by
using the BlackPoplar 12K Infinium BeadChip array and
the NOH samples with a pilot multispecies-Plant Illumina
BeadChip developed by the INRA-EPGV group. Briefly,
they consisted in 7918 SNPs which specifically targeted
candidate regions for quantitative traits of interest such as
rust resistance, bud phenology, water use efficiency, and
wood production and quality. Because the SNPs targeted
specific regions, they were not evenly spaced on the 19
chromosomes of Populus trichocarpa genome, potentially
resulting in uneven linkage disequilibrium between them
and consequently bias in genomic heritability estimates
(Speed et al. 2012). To account for such possible bias,
we estimated a LD-adjusted genomic relationship matrix
(GRM) using BLDAK^ software as proposed by Speed
et al. (2012). We further evaluated the population struc-
ture in our dataset by performing (i) a hierarchical ascen-
dant clustering (Ward method) on the LD-adjusted GRM,
converting relationships (kij) into dissimilarities (dij) as d-
ij = max(GRM) − kij) and (ii) a principal component anal-
ysis through an eigen decomposition of the LD-adjusted
GRM. Finally, for further comparison with the phenotypic
differentiation index (PST) (see below), the overall genetic
differentiation index (FST) was computed over the popu-
lations under study using all SNPs with a minor allele
frequency above 5% (n = 7378) and the Weir and
Cockerham (1984) estimator as implemented in the R
package Bhierfstat^ (Goudet and Jombart 2015).
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Narrow sense heritability (h2) and phenotypic
differentiation index (PST)

To estimate the genetic and residual variance-covariance
matrices between all the traits measured across the two wa-
ter regimes, we fitted the following multivariate linear
mixed model with the mmer2 function of the R package
Bsommer^ (Covarrubias-Pazaran 2016):

y ¼
y1
…
yn

2
4

3
5 ¼ Xβ þ Zgg þ ϵ; ð1Þ

where β is the vector of fixed effects and g the random vector

of additive genetic effects, with var gð Þ ¼
σ2g1 ⋯ σg1n
⋮ ⋱ ⋮
σgn1 ⋯ σ2gn

2
4

3
5⊗Kg

and var ϵð Þ ¼ σ2ϵ1 ⋯ σϵ1n
⋮ ⋱ ⋮
σϵn1 ⋯ σ2ϵn

2
4

3
5⊗I, Kg is the LD-adjusted GRM,

and I an identity matrix.
The genetic covariance matrix enabled to compute for each

trait the genomic narrow-sense heritability as well as the ge-
netic and residual correlation matrices between all traits:

h2i ¼
σ2gi

σ2giþσ2ϵi
; ρgij ¼

σ2giffiffiffiffiffiffiffiffiffi
σ2giσ

2
gi

p and ρϵij ¼
σ2giffiffiffiffiffiffiffiffiffi
σ2ϵiσ

2
ϵi

p , where σ2
gi

and σ2
ϵ j

are estimates of additive genetic and residual vari-

ances for the trait i, and σgij , and σ∈ij are estimates of additive

genetic and residual covariances between traits i and j.
Because of the low sample size, we could not perform a

further decomposition of the genetic variation into within- and
between-population variances which would enable an estima-
tionof thegeneticdifferentiation index(QST) for eachtrait, even
under a multivariate setting which would maximize the avail-
able information in the dataset. As an alternative, we computed
the phenotypic divergence between populations as the PST

using previous estimates of heritability together with variance
components from the following multivariate mixed model
fitted with the function mmer2 of the R package Bsommer^:

y ¼
y1
…
yn

2
4

3
5 ¼ Xβ þ Zppþ ϵ; ð2Þ

whereβ is the vector of fixed effects and p the randomvector of
cluster or population effects, with

var pð Þ ¼
σ2
p1

⋯ σp1n
⋮ ⋱ ⋮
σpn1 ⋯ σ2

pn

2
4

3
5⊗Kp, and Kp is the LD-adjusted

GRM between clusters or populations.

PSTi was calculated as follows: PSTi ¼
σ2pi

σ2piþ2h2i σ
2
ei
with h2i

estimated within Eq. 1 and where σ2
pi
and σ2

ei are estimates

of cluster or population and residual variances among and
within-cluster or population respectively.

Results

DNA methylation variations among P. nigra
populations and in response to water deficit

Global DNA methylation levels were evaluated from winter
dormant buds 6months after the summer period ofwater stress
(Chamaillard et al. 2011; see Supplementary Table 1). The
ANOVAmodel revealed no population × condition interaction
effect. DNA methylation ranged from 15.9 to 55.7% between
genotypes or treatments in the three populations. In both well-
watered (irrigated) and water-deficit (drought) regimes, the
three populations could not be distinguished according to their
levels ofDNAmethylation.However, the globalDNAmethyl-
ation was significantly affected by water deficit (Fig. 1a).
Biomassandheightwere significantlyandpositivelycorrelated
among them but not with levels of global DNA methylation
(Fig. 1b; Supplementary Table 1).

Genetic structuration of the P. nigra populations

Ahierarchical ascendant clusteringon thegenomic relationship
matrix revealed four different clusters (Fig. 2a; Supplementary
Tables 2 and 3). The first cluster was constituted of the NOH
individuals (n = 10), the second of the RAM individuals (n =
11), and the third of theSPMindividuals (n = 10).However, the
fourth cluster was composed of both RAM and SPM individ-
uals (n = 11). This group was likely due to introgression from
the cultivated compartment (IT for InTrogressed). This genetic
structure within our dataset was also clearly revealed by the
PCA analysis carried out from the GRM (Fig. 2b). This under-
lying structure was therefore used in the following analyses by
performing the FST and PST estimations on the four clusters
defined by the clustering in addition to the three original popu-
lations (geographic). The average FST index over the four
groupswas equal to 5.48%.This valuewas slightly higher than
the FST estimated on the three original populations (4.65%).
DNA methylation variations among the four clusters were
reassessed (Fig. 1c) but with nomajor change compared to the
three original populations (Fig. 1a).

Heritability, PST estimates of DNA methylation,
and genetic correlations

For all the traits studied,h2was higherwhenplantswere grown
under drought condition. Heritability estimates varied also be-
tween traits ranging from 0.15 for global DNAmethylation in
the irrigated condition to 0.56 for height in the drought stress.
Narrow-senseheritabilityofglobalDNAmethylationshoweda
twofold increase in drought compared to irrigated conditions
(B0.32^; Fig. 3a). Phenotypic differentiation index estimates
varied also depending on traits and growing conditions. They
ranged from 0.01 (Global DNAmethylation, irrigated) to 0.30
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Fig. 1 Global DNAmethylation variations and phenotypic correlations. a
DNA methylation of SAM for three geographical populations of P. nigra
(Nohèdes [NOH], Ramières [RAM], and Saint-Pryvé Saint-Mesmin
[SPM]) grown in irrigated and drought regimes. NOH is represented by
11 genotypes, RAM by 15, and SPM by 16 genotypes. % mC percentage
of methylcytosine. b Phenotypic correlations between global DNAmeth-
ylation and biomass or height in irrigated (left) and drought (right)

regimes. Significant differences are indicated: *P < 0.05, **P < 0.01, or
***P < 0.001. c DNA methylation variations of SAM among the four
groups defined by the clustering on the genomic relationship matrix
(NOH, RAM, SPM, IT) grown in irrigated and drought regimes. NOH
is represented by 10 genotypes, RAM by 11, SPM by 10, and IT by 11
genotypes
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(Height, drought) with a globalFSTof 0.05. However, The PST
of global DNA methylation exhibited a strong increase in
drought stress (0.26) compared to the irrigated condition
(0.01) or the global FST (0.05). These PST estimates obtained
by taking in account our genetic structure (i.e., by considering
the four groups) were slightly higher to the ones determined
using the three original populations (Fig. 3b).

Finally, genetic and residual correlations between global
DNA methylation and height or biomass were computed
(Fig. 4). In non-irrigated regime only, biomass and height
were negatively correlated to global DNA methylation level
(− 0.45 and − 0.54, respectively; Fig. 4a). Positive residual

correlations between DNA methylation level and biomass or
height were detected under drought stress only (0.62 and 0.72
respectively; Fig. 4b).

Discussion

Global DNA methylation, a simple widely used
epigenetic indicator

In plants, DNA methylation is associated with transposon si-
lencing and complex interactions with gene expression that

Fig. 2 Genetic architecture of the
populations. aGenetic similarities
and cluster tree were generated
using ward hierarchical
classification from genome-wide
SNPs. The clustering on the GRM
shows four different groups
(NOH, RAM, SPM and IT) where
IT refers to introgression of the
cultivated compartment. b
Principal component analysis of
the four groups identified in the
genomic kinship matrix. PC1
(8.1%), PC2 (4.3%), and PC3
(3.6%). NOH is represented by 10
individuals (yellow), RAM by 11
(blue), SPM by 10 (red), and IT
by 11 individuals (green)

 78 Page 6 of 12 Tree Genetics & Genomes  (2018) 14:78 



canmodify phenotype in response to environmental variations
(Lande 2009; Bräutigam et al. 2013; Meyer 2015; Kawakatsu
et al. 2016; Bewick and Schmitz 2017; Seymour and Becker
2017). Although epigenomics methods such as whole genome
bisulfite sequencing (WGBS) can actually provide methyla-
tion at the cytosine level over the whole genome for se-
quenced species (Yong et al. 2016), global DNA methylation
is still reported in many studies (Lambé et al. 1997; Trap-

Gentil et al. 2011; Teyssier et al. 2014; Alonso et al. 2015;
Alonso et al. 2016; Plomion et al. 2016). Global DNA meth-
ylation varies among plants species (Lambé et al. 1997;
Alonso et al. 2015; Plomion et al. 2016), in relation to genome
size in Angiosperms (Alonso et al. 2015), in extensive ploidy
series in Dianthus broteri (Alonso et al. 2016), between indi-
viduals from a given population (Vaughn et al. 2007; Schmitz
et al. 2013), as well as within a genotype in response to envi-
ronmental constraints or during developmental processes
(Causevic et al. 2005; Teyssier et al. 2008; Gourcilleau et al.
2010; Trap-Gentil et al. 2011; Teyssier et al. 2014; Condé
et al.2017). In poplar, variations in global DNA methylation
have been measured in response to biotic or abiotic stress, or
according to geographic origin (Gourcilleau et al. 2010; Raj
et al. 2011; Latzel et al. 2013; Garg et al. 2015; Song et al.
2016; Lafon-Placette et al. 2018). Here, we evidenced varia-
tions in global DNA methylation in winter-dormant SAMs
among genotypes from three populations of black poplar in
field conditions subjected to contrasting water availability dur-
ing the growth period. The values and the range of variations
were similar to those previously reported in poplar
(Gourcilleau et al. 2010; Raj et al. 2011) or other plants
(Trap-Gentil et al. 2011; Alonso et al. 2015 and 2016).
Altogether, epigenetic variations, such as global DNA meth-
ylation, among populations and in response to stress, can be a
determinant of population phenotypic variations in addition to
genetic variations (Latzel et al. 2013; Cortijo et al. 2014;
Kooke et al. 2015; Kawakatsu et al. 2016; Richards et al.
2017).

Drought induces stable changes of global DNA
methylation in populations

Chamaillard et al. (2011) previously reported a broader eco-
physiological analysis of genotype drought responses, includ-
ing the 42 genotypes studied here. The moderate drought re-
duced growth performance-related traits such as annual shoot
fresh mass, but the effect of drought was neither genotype- nor
population-dependent. Trait variations such as water-use effi-
ciency (assessed from bulk leaf carbon isotope discrimination,
Δ13C), growth performance, and leaf traits were larger within
than among populations. Altogether, Chamaillard et al. (2011)
proposed that the large variations found within populations
combined with the consistent differences among populations
could suggest a large adaptive potential for P. nigra.

Here, the geographical (three populations) or genetically
based clusters (four populations) did not differ in global
DNA methylation, but drought was shown to significantly
decrease global DNA methylation in all clusters. In addition,
the SAMs (winter dormant) were collected six months after
the summer drought, suggesting a stable epigenetic effect of
water deficit probably maintained through cell division in the
meristem at least until winter and dormancy. Many studies in

Fig. 3 Narrow-sense heritability and PST estimates calculated using
sommer package in a multivariate analysis with genome-wide SNPs. a
Narrow-sense heritability estimates. b PST estimates computed using the
four groups defined by the clustering (left) or the three original popula-
tions (right). Horizontal dot lines indicate the average FST index. The FST
over the four groups was slightly higher (0.0548) than in the three original
populations (0.0456)
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poplar have highlighted the importance of DNA methylation
in response to environmental changes (Gourcilleau et al. 2010;
Raj et al. 2011; Bräutigam et al. 2013; Liang et al. 2014;
Conde et al. 2017; Lafon-Placette et al. 2018). Recently,
Lafon-Placette et al. (2018) have shown that variations in soil

water availability induce changes in DNA methylation pat-
terns (differentially methylated regions) preferentially for
genes of the phytohormone pathways. The concepts of
Bpriming^ and Bstress memory^ in plants have been recently
applied to abiotic stress responses such as water deficit (Sultan

Fig. 4 Genetic and residual correlations between global DNAmethylation and height or biomass calculated using variance estimates of the mixed model
of Eq. 1. a Illustration of the genetic correlations. b Residual correlations
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et al. 2009; Ding et al. 2012; Fleta-Soriano and Munné-Bosch
2016; Mauch-Mani et al. 2017; Lämke and Bäurle 2017).
Only few reports are actually available for trees that are
long-living organisms subjected to repeated environmental
constraints (Yakovlev et al. 2010; Raj et al. 2011; Yakovlev
et al. 2011; Bräutigam et al. 2013; Schönberger et al. 2016;
Yakovlev et al. 2016; Yakovlev and Fossdal 2017). Here, we
showed that the winter dormant SAMs of individuals from
distinct natural black poplar populations exhibited variations
of global DNA methylation six months after a summer
drought suggesting an epigenetic memory in field conditions
that could possibly participate in acclimation or local adapta-
tion (Richards et al. 2017).

Global DNA methylation as a genetic marker of black
poplar population differentiation under drought
stress

For the first time, genetic parameters (h2, PST, genetic corre-
lations) were estimated for DNA methylation level in natural
tree populations using genome-wide SNPs (Supplementary
Table 1). Unexpectedly, genomic relatedness matrix revealed
four different groups with a mixed group composed of RAM
and SPM individuals and FST showing that RAM and SPM
were more similar than NOH population. This group was like-
ly due to the introgression from the very few poplar cultivars
deployed on French poplar stands (as already hypothesized in
Faivre-Rampant et al. 2016). Estimates of DNA methylation
h2 were similar to the ones obtained for biomass and increased
when populations (geographically or genetically clustered
ones) were subjected to drought. This suggests that under
environmental constraint, the DNA methylation variations
are likely linked to genetic variations in these populations. In
line with this, Dubin et al. (2015) have shown in Arabidopsis
thaliana that an increase in temperature was associated to
increased DNA methylation levels in transposable elements
and that these variations were strongly associated to genetic
variations close to the DNA methyltransferase CMT2 gene
involved in DNA de novo methylation in CHH context.

We also assessed population differentiation using PST (an
estimation of phenotypic differentiation QST) estimates and
found that PST for DNA methylation levels exhibit a strong
increase under drought stress suggesting a population specific
DNAmethylation status under drought. In irrigated condition,
the PST of global DNA methylation was lower than the FST
(PST < FST) while in drought, the PST became much higher
than the FST (PST > FST). Using PST − FST approach to detect
indirect signals of divergent selection on dorsal plumage col-
oration in pied flycatcher males, Lehtonen et al. (2009) have
found that PST and FST were positively correlated suggesting
that genetic drift may have contributed to the observed phe-
notypic differentiation. The higher PST recorded under
drought stress in our study as compared to the FST could be

suggestive of a directional selection influencing the DNA
methylation level (Merilä and Crnokrak 2001; Leinonen
et al. 2008). To go further, genetic correlations between global
DNA methylation and height or biomass were significantly
negative only in drought condition. For the residual correla-
tions, a positive correlation between global DNA methylation
and height or biomass in drought was detected indicating an
effect of the environment. This suggests that the negative ge-
netic correlations between growth and global DNA methyla-
tion are compensated by environmental positive correlations
resulting in no significant phenotypic correlations.

Altogether, we showed that winter-dormant SAMs of black
poplar genotypes from natural populations grown in field con-
dition keep an epigenetic memory of a drought summer epi-
sode through modifications of global DNA methylation
levels. It will be interesting to see if the variations of global
DNA methylation observed in winter-dormant SAMs after a
drought are held through the following summer, with or with-
out another round of induced summer drought. In addition,
global DNA methylation levels in these populations are ge-
netically and environmentally determined and may be used as
a genetic marker for population differentiation. This work
opens perspectives that should be addressed in future projects
to analyze the role of DNA methylation in stress memory and
G × E interactions in natural tree populations using
epigenomic approaches at the whole genome level.
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